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In the inertial interval of turbulence one asserts that the velocity structure functions S, (7) scale like

¢ . . s .
r"°". Recent experiments indicate that S, (r) has a more general universal form [rf(r/7)

]ng" , where 7 is

the Kolmogorov viscous scale. This form seems to be obeyed on a range of scales that is larger than
power law scaling. It is shown here that this extended universality stems from the structure of the
Navier-Stokes equations and from the property of the locality of interactions. The approach discussed
here allows us to estimate the range of validity of the universal form. In addition, we examine the possi-
bility that the observed deviations from the classical values of £, = 5 are due to the finite values of the
Reynolds numbers and the anisotropy of the excitation of turbulence.

PACS number(s): 47.27.—i

I. INTRODUCTION

The degree of excitation of a turbulent flow is charac-
terized by its Reynolds number Re= UL /v, where L is
the outer scale, U is the typical velocity difference across
this scale, and v is the kinematic viscosity of the fluid.
One expects that at high values of Reynolds number tur-
bulent flows would exhibit scaling laws; the structure
functions of the longitudinal velocity fluctuations S,(r)
are expected [1] to behave like

at,
) (1.1

r

S, (N=(du,(x)?) ~U I

where du,(x)=[u(x+r,t)—u(x,t)]-r/r, u(x,t) is the ve-
locity field, &, are scaling exponents, and ( ) denotes an
average over time. It is well known, however [1], that the
observation of clean scaling laws in turbulence requires
very high Reynolds numbers. Equation (1.1) is expected
to hold only for scales significantly larger than the Kol-
mogorov viscous scale 77, where 7~L(Re/Re,) */* and
Re, is the critical Re value for the onset of turbulence (of
the order of 10>°-~10%). At most laboratory flows the Rey-
nolds number is not high enough to have a very sizable
scaling range. The influence of the viscous cutoff is felt
already on scales of the order of 1007.

To overcome this difficulty, it was suggested recently
[2] to examine the universal scaling properties of velocity
structure functions in a different way. Rather than exam-
ining the r dependence of each g-order structure func-
tions separately, Ref. [2] studied the functional depen-
dence of one structure function on the other. The upshot
of the data analysis was that it appears that S (r) can be
written as

r
n

where f(r/7) is a scaling function which is the same [2]
for all g. It appears that Eq. (1.2) holds for lower scales
than (1.1), i.e., to scales of the order of a few 7). Since the

96,

S,(n=c, : (1.2)

rf

1063-651X/94/49(5)/4044(8)/$06.00 49

values of S, in this range of scales are exponentially small
compared to their value in the inertial range, one gets a
significant increase in the range of linear behavior by
plotting the logarithm of S,(r) vs the logarithm of S,.(r).
The authors of Ref. [2] found a linear relationship that
extended over 4-6 orders of magnitude in such plots.
The aim of this paper is to explain the theoretical basis of
(1.2), to predict the lower range of its validity, and to esti-
mate the exponents. In the experiment the exponents
turned out nonclassical. We shall examine the possibility
that this result stems from corrections to scaling. We
shall refer to Eq. (1.2) as the relation of “‘extended univer-
sality.”

It will be shown below that the explanation of (1.2) is
based on two equally important factors. First is the fact
that the viscosity and the time derivative appear in the
Navier-Stokes equations [1,3] in terms which are linear in
the velocity field:

du/dt+u-Vu—vVu—Vp=0, V-u=0 (1.3)

where p is the pressure. This fact translates to an impor-
tant feature of the nth-order correlation functions of ve-
locity fluctuations: while the two-point Green’s function
(response function of the velocity field to external pertur-
bations) is an explicit function of the viscosity, the two-
point correlator and all the higher-order correlation func-
tions depend on the viscosity only implicitly through
their dependence on the Green’s function [4]. We shall
demonstrate this important fact using renormalized per-
turbation theory in Sec. II and employ it as the first fun-
damental property behind Eq. (1.2).

The second ingredient of our explanation of the ex-
tended universality is the property of “locality.” By lo-
cality we mean here two different things. One is locality
in the sense of Kolmogorov [1,5], meaning that velocity
fluctuations Su,(x) interact most effectively with velocity
fluctuations du,(x) for which r'=O(r). The second
meaning is locality in the sense that structure functions
S,(r) are related to nth-order velocity correlation func-
tions in k representation such that the region in which
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k =~1/r is most significant. Both these properties will be
demonstrated in Secs. III and IV and used to reach the
final result Eq. (1.2).

Of course, a proper derivation of Eq. (1.2) must include
the limits of its validity. We shall see that the conditions
of locality which allows us to derive Eq. (1.2) can be writ-
ten as the condition

_ d lI]Sz(r )

26,(n= a1 <2
For sufficiently small scales where the exponential decay
of S,(r) has already set in the condition (1.4) is violated.
Notice that in the scaling regime the value of 2£,(7) is
about %. As pure power-law behavior is lost at smaller
scales, we can think of the logarithmic derivative (1.4) as
an r-dependent scaling exponent §,(r). The extension of
the universal behavior (1.2) compared to pure power-law
behavior is given by the range in which 2£,(r) goes be-
tween 2 and 2. Thus the borderline of (1.4), and therefore
of the applicability of (1.2), should be closer to the Kol-
mogorov scale 7 than the breakdown of the power-law
form of S,(r). We shall see that the gain is in about one
order of magnitude of length scales.

It will turn out that in the theory that we shall describe
below the value of the scaling exponents §, is § for all g.
The experiment of Ref. [2] found agreement with Eq.
(1.2) but with nonclassical exponents, and in particular
2£,=0.701. We shall argue in Sec. V that it is very likely
that in these moderate-Reynolds-number experiments the
difference from classical exponents stems from correc-
tions to scaling due to the anisotropy of the flow in the
large scales. This anisotropy decays only slowly with di-
minishing scales (as a power law), and this may result in a
correction to scaling. We estimated the correction to 2§,,
and found that

(1.4)

2/5
const X7 ~Re~3/10

I (1.5)

If this is the right mechanism for the deviation in £, from
its 1 value, then Eq. (1.5) is a prediction that can be test-
ed in experiments such as those of Ref. [2]. At present
there is no experimental evidence for a Re dependence of
&, and therefore it is possible that the observed anoma-
lous scaling stems from a deeper cause.

II. HIGH-ORDER CORRELATION FUNCTION
EXPRESSED IN TERMS
OF TWO-POINT PROPAGATORS

The aim of this section is to recall the renormalized
perturbation approach [4,6] to the Navier-Stokes (NS)
equations which will allow us to express high-order corre-
lation functions in terms of two-point correlation func-
tions. We shall first introduce the necessary notation and
then study the property of locality.

A. Reminder of the diagrammatic perturbation approach

The three fundamental quantities in terms of which all
higher-order correlation functions can be expressed are

4045

the Green’s function of G, g(k,®), the two-point correla-
tion function F, g(k,w), and the bare vertex of the NS
equations I" 5, (k;,k;, k3) which are defined as

G, pk,0)8(k+k')8(w+0')=(bu,(k,0)/8¢5(k',0")) ,
2.1
F,p(k,0)8(k+k")8(0+0")=(u,k 0lugk’,0)) ,
2.2)

where u(k,w) is the Fourier component of the velocity
field u(x,?) and ¢ is an external Gaussian force that is go-
ing to be eliminated in the course of the calculation. At
the present time it is used to define the averaging pro-
cedure, which is done with respect to realizations of this
force. We are not going to define the vertex here, because
at any rate the perturbation theory is done in quasi-
Lagrangian coordinates with a different vertex that is go-
ing to be discussed later.

The well-known Dyson-Wyld equations for isotropic
systems in terms of isotropic G(k,w) and F(k,w) are [4,6]

1
o+ivk:—3(k,0)

F(k,0)=|G(k,0)*®k,0) .

Gk,w)=

(2.3)

(2.4)

The relations between the scalar propagators G and F
and the tensors propagators G,g and F,p are
G pk,0)=P, (k)G (k,») and F,p(k,0)
=P, g(k)F(k,0), where P, g(k) is the transverse projec-
tion operator [1] (Sa,ﬁ—kakﬂ/kZ). The self-energy term
2(k,») and the nonlinear noise function ®(k,w) are
given in terms of an infinite series of integrals which in-
volve again G (k,0),F(k,»), and the bare vertex. It is
important to stress that neither 2(k,») nor ®(k,w) con-
tains the viscosity v explicitly. For example, the lowest-
order contributions to 2(k,w) and ®(k,w) are [4,6]

Zz(k,w)=$ [ Tagy (kK1 Ky )T, (K1, Ky )

XG(ky,0,)F(ky,0,)8(k+k;+k;)

Xa(w+wl+ﬂ)2)dkldk2d(01da)2 , (2.5)
@5k, 0)=—— [ T2, (k,k;,k;)F (k1,0 )F (kyy0,)
1672
xdkldkzd(old(l)z . (2.6)

Also all the higher-order contributions are written as
functionals of the same three objects, without explicit
dependence on the viscosity.

In exactly the same way the higher-order correlation
functions depend on the same three objects. For exam-
ple, the three-point correlation function F® is defined as

F:Sﬁ)y(kl,wl;kz,wz;k:;,a)3 )a(kl +k2+k3)8((l)1 +(l)2+(03)
=(ua(kl,wl)uB(kz,wz)uY(k:;,(D:;)) . (2.7)

Within this perturbative approach one develops an
infinite series representation for F () and, for example,
one derives for F*) and F'¥
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(ky,01;ky, 0,5 k3,03)
= agy(kl,kz,kﬂG F,F;
+T,5ks K Ky )G, FL F,
+Tpalky ks, k)G F3 Fyj+ -0 (2.8

ﬂB‘V

F(:B)‘VS(kl)wl;kzywz;k3,m3;k4,w4)
= 1{Tapok,ky, Q)T 55—, k3, k)G FL F3F,G(q, Q)

+all permutations}+ - - - , (2.9)

where G, and F; are shorthand notation for G(kj,wj)
and F(k;,0;), respectively, and q=—k,—k, and
Q= —w,;—w,. The permutations in (2.9) are all the 4!—1
possible pair permutations on the indices. The ellipses
stand for higher-order terms. We see again that only the
two point propagators F and G and the vertex I appear
in all these expressions.

B. Connection to the structure functions of velocity differences

The theory sketched in Sec. IT A is in terms of the k,»
representation of correlation functions. We need now to
connect to the experimentally measured structure func-
tions of velocity differences (1.1). This is done in two
steps. First, we need to integrate out the frequency
dependence, to obtain simultaneous correlation functions,
denoted F ")(kl, ...,k,). For example,

- do
Fopl)=27 [ [ Folkabloto) 9220, @10
izBﬂ)y(kI’kZ’kﬂ
=27TfffFiZ}B)y(kl,wl;kpwz;k:;,w:;)
da)l da)z d(z)3
Xb(w,+w,+w;) —, (2.11)

2 27w 2w

etc. Second, we need to Fourier transform back from k
representation to r representation. Given the simultane-
ous functions F™(k,, . ..,k,) we can compute the struc-
ture functions S, (r) via the following relation:

S,n=@m? [ -+ [F"k,... k)5

ékjl

Jj=1

n ) dk;
X,'I;[1 [1—exp(ik;-r)] o |

(2.12)

To implement the program of computing the structure
functions S, (r) from Eq. (2.12) we need now to examine
the property of the locality of interactions. This exam-
ination will lead to an understanding of the range of va-
lidity of the extended universality.

III. THE PROPERTY OF LOCALITY
AND ITS IMPLICATIONS:
EXTENDED SCALING RELATIONS
AND EXTENDED UNIVERSALITY

The perturbative expansion done in Eulerian coordi-
nates is plagued with divergences order by order so that a
resummation is needed. It was shown that a useful resum-
mation is obtained by employing quasi-Lagrangian veloc-
ities. Using Lagrangian velocities one eliminates the
effect of sweeping of small scale structures by large-scale
structures which is responsible for the divergences in the
Eulerian representation. The Eulerian and Lagrangian
velocities are related by [7,8,9]

u(r,t)=v

tor— [ virgrndr,t | . 3.1)

In terms of v as the fundamental field one can develop a
perturbation approach that was shown [7] to be free of
divergences in both the ir and the uv regimes. There is a
price to pay: in the quasi-Lagrangian formulation the
homogeneity of space is lost, leading to some unpleasant
technical difficulties in the theory. Happily, these techni-
calities were dealt with [7,8], and we can use for our pur-
poses just the essential facts.

One such fact is that the Eulerian vertex I' 5, (k,k;,k;)
is replaced by the quasi-Lagrangian vertex Vg, (k,k;,k;)
which has very different asymptotic properties. Namely,
T 5,(k,k;,k;) =~k for any value of k, or k,. On the other
hand, for k >k, or k >>k,, V,g,(k,k;,k,) is of the or-
der of the smallest wave vector:

V5 (k, Ky, ky) ~min(k,k;,k,) . (3.2)

aBy

aBy

This makes the Lagrangian vertex much smaller than the
Eulerian one when k, or k, is much smaller than k. The
reason is of course that the latter contains the sweeping
interactions whereas the former does not. The Lagrang-
ian vertex describes just the nonlinear dynamic interac-
tions.

A. Locality of dynamical interactions

In the following we are going to seek solutions for the
two-point propagators in the form

1 @
(3.3)

G(k,0)= (k) y(k

F(k) )
St 3.4
F(k,w) 7/(k)f ) (3.4)

In the inertial interval the solution should be scale invari-
ant, i.e.,

y(k)~k*, F(k)~k™”. (3.5)

We shall not assume such a scale invariant form, but
rather study the possibility that y(k) and F(k) differ
from (3.5). One can actually find solutions of a form
more general than power laws, and these apply on a wid-
er range of scales than the scale invariant form (3.5). In
fact, we shall see that the crucial quantity is the deriva-
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tive of InF(k) with respect to Ink:

_ dInF(k)
d Ink

When k increases, y (k) increases due to viscous dissipa-
tion.

In studying locality one needs to examine both the uv
and the ir regimes of k vectors. The issue of locality has
been examined already before in the context of the scale
invariant solutions (3.5) for y close to the Kolmogorov
value of 1. It was shown [7] that there are neither uv
nor ir divergences. Since the solution that we seek now
has faster decay for large k vectors than the scale invari-
ant solution, we do not need to examine again the uv re-
gime; we are guaranteed convergence there. On the other
hand, for sufficiently large values of y (k) the ir conver-
gence can be lost. We thus need to study carefully the
limit of convergence of our theory with the forms (3.3),
(3.4).

To study the locality, examine first the typical integrals
appearing in (2.5) and (2.6). After transforming to quasi-
Lagrangian coordinates, we need to replace the vertices
[op, with the vertices ¥V 5,. Then we break the integra-
tion over k, to the two regions [0,k *] and [k *, » ], with
k* <<k. The ir regime corresponds to the first interval.
Examine first (2.5). Due to the & function, k; is
—(k+k,), and therefore k, ~—k in this regime. In a
scaling theory the most relevant frequencies are
©~O0(y(k)). Therefore in the region k,<<k, also
®, <<, and w,~ —w. Taking all this into account, and
using the asymptotic properties of the quasi-Lagrangian
vertices (3.2), we find the ir contribution to (2.5):

24(k,0)=C,G(k,@)(K*) ,
k)= [ *" (e, *F(ky )k
0 2 2 2

=y(k) . (3.6)

(3.7
(3.8)

with C, being a constant. Similarly, one can find that the
ir contribution to the lowest order diagram of ® is

@, (k,0)=C,F(k,0)I(k*) . (3.9)

Analysis of higher-order diagrams reveals that in each or-
der the ir contribution is proportional to a power of
I(k*), with the power being determined by the number
of loops in the diagram. Therefore, the ir convergence is
determined by the convergence of I(k*). The latter is
safely convergent as long as y (k) of Eq. (3.6) is smaller
than 5 throughout the regime of small k. In other words,
y (k) should tend to a limit smaller than 5 as k tends to
zero.

In studying the higher-order correlation functions we
find that to lowest order there are no integrals appearing;
cf. (2.8) and (2.9). In higher-order contributions integrals
appear, and their ir locality property can be analyzed in
precisely the same way, leading to the same boundary of
locality.

B. Extended scaling relation

Using locality we can derive now a relation between
y(k) and F(k). To this aim we study first the series ex-
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pansion for ®, whose lowest-order contribution is Eq.
(2.6). Using locality it is clear that the main contribution
to ®,[k,0=y(k)] comes from the region where k,; and
k, are of the order of k and where », and w, are of
O(y(k)). We can estimate the integral (2.6) by replacing
dk by k3, do by y(k), and F(k;,»;) by F(k)/y(k). This

results in the estimate
®,[k,0=y(k)]=k’[F(k)]*/y(k) . (3.10)

The analysis of higher-order contributions to @ is as
straightforward and the result is

®D,,[k,0=y(k)]=®,[k,0=~y(k)][AK)]* ", (3.11)
where the “expansion parameter ” A(k) is
A(k)=Kk3F(k)/y(k)* . (3.12)

This quantity can be evaluated by integrating the Wyld
equation (2.4) over frequencies. Again the main contribu-
tion to the integral comes from w=7y(k), and according
to (3.3) the result of the integration is

F(k)=®[k,o=y(k)]/y(k) . (3.13)

Estimating ®[k,0=y(k)] as ®,[k,0=y(k)], we get, us-
ing (3.10), that A(k)=1 or, in other words,

y(kP=k3F(k) . (3.14)
As we have found that A(k) is of order 1, all the terms in
the expansion of ® are of the same order. It is customary
in this type of theory to assume that this means that ® is
of the order of each of its terms. This is not a trivial as-
sumption and it needs justification. Indeed, it has been
justified under certain conditions [8] and we refer the
reader to Refs. [1,6,8] for further discussions on the gen-
eral validity of this assumption. The crucial point is that
making this assumption justifies Eq. (3.14) as a self-
consistent result with all the diagrammatic series and not
only to one-loop order. In the scale invariant situation,
where Eq. (3.5) is obeyed, it leads to the well-known scal-
ing relation 2z +y =5. Our Eq. (3.14) has a wider range
of validity which extends to the borderline of locality
y =5. We shall argue below that in fact y(k) has the
physical meaning of an “eddy turnover time” for “ed-
dies” of size 1/k. We shall refer to Eq. (3.14) as the “ex-
tended scaling relation.”

C. Higher-order correlation functions in k space

In this subsection we shall evaluate the higher-order
simultaneous correlation functions F gy(kl,kz,kﬂ,
F) 5(k,ky,ks,k,), etc. in the regime that all the wave
vectors k; are of the same order of magnitude. We shall
examine explicitly the lowest-order contributions (2.8)
and (2.9) and learn from them how to reach conclusions
that are valid to all orders due to the properties studied
in the preceding subsection.

Begin with Eq. (2.11) and employ the same rule as be-
fore, i.e.,  is replaced by y (k). The result is
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F3 (k k) =y (k)F g5, (k,o=y(k)k

Similarly we can find the nth-order expression

Fop .. (kk,...,K=yk) " 'F3, (ko=y(k)k

Next we need to evaluate the right-hand side of Eq. (3.15)
using Eq. (2.8), but replacing the Eulerian vertex with the
quasi-Lagrangian one. Since V(k,k,k) is of order k we
find

FO (k,o~y(k)ik,o~y(k)k,o~y(k))

~k[F(k)]*/[v(k)]P.  (3.17)
Substituting in (3.15) we find
F3k,k,k)=k[F(k))*/[v(k)] . (3.18)

By looking at the higher-order contributions to F*’ one
discovers that as long as locality is obeyed, the difference
of each term from (3.18) is again in powers of A(k) which
as we saw is of O (1). With the same assumption that the
sum of the terms is of the order of each of the terms we
conclude that (3.18) is valid to all orders.
Repeating the procedure for F'*(k,k,k,k) we find
from (2.9) that
F®k, k,k, k) =F(k)[kF (k) /y (k)] .

The general relation can be guessed already (and checked
by the diligent reader):

F"™(k, ..., k)y=F(k)[kF(k)/y(k)]" 2

(3.19)

(3.20)

This result, together with our extended scaling relation
(3.14), leads to the final estimate for the higher-order
correlations in k space:

F™k, ... k)=[F(k)]"/2k31=n/2) (3.21)

Notice that in the inertial range this relation is a triviality
that results from dimensional analysis. However, this re-
sult, as derived here in an extended range of scales down
to scales which are influenced by the viscosity, is not at
all trivial and it requires the property of locality. We
reiterate that the viscosity appears in the higher-order
functions only through its influence on the two-point
function F(k). Outside the region of locality (3.21) is not
obeyed. This will give us the borderline of validity of the
extended universality. What remains now is to transform
this result to r space and to compare with the experimen-
tal findings.

IV. LOCALITY OF RELATIONS
BETWEEN STRUCTURE FUNCTIONS
AND CORRELATION FUNCTIONS

Physically it is reasonable to expect that the relation
between the structure functions S, (r) and the correlation
functions F (")(kl, ...,k,) is local in the sense that the
main contribution to the integral in Eq. (2.12) comes
from the region of k;=k,~= -+ =1/r. We need to ex-
amine, however, the borderline of this locality in order to
employ the results of the previous sections, which are val-

,o=y(k)k,o=y(k)) .

so=y(k);. . .

(3.15)

;k,o=y(k)) . (3.16)

—

* id only within a region of ir locality that was found there.

To our surprise we find that in fact the two localities have
exactly the same boundary y (k)=5. We demonstrate this
fact in this section.

A. Two-point functions

The two-point structure function S,(r) is written as

- dk,
S,(r)= [ F(k))|1—exp(ik,r)|*
g f ! plikyr) (2m)}
As before, we do not worry about uv divergences for ob-
vious reasons. The ir problem is studied by again exam-
ining the integral in the interval [0,k *], with k* <<1/7.
In this region (4.1) turns into

Sy u(r)=Cyr’I(k*) , 4.2)

4.1)

where I(k*) is the same integral as in (3.9). Obviously,
the boundary of locality is the same for S, as before.

B. Third-order structure function

Begin with Eq. (2.12) for n =3. The infrared region
has contributions from two regimes: (i) one of the argu-
ments of F**), say k, is small, k, <k* <<1/r, but k, and
k; are of O(1/r); and (ii) all three arguments are small
k,~k,~ky<k*<<1/r. Due to the 8 function in (2.12)
we cannot have only two arguments being small. In re-
gion (i) we expand the exponential in k, and gain one fac-
tor of k,;r. The asymptotic properties of the simultane-
ous third-order correlation function in the regime (i) were

studied in [10], i.e., for k small:

F¥ i, ky,k3) =cF(h(ky) , 4.3)
with & (k,) being a function of k, that will not matter for
our discussion. Using this in Eq. (2.12) we get

—_— . (4.4)
2m)}
We learn that the boundary of locality is again deter-
mined by the same integral I (k*).
In the second regime we expand all the exponentials
and use Eq. (3.22) for n =3. We find that in this regime

S (r=Cyr’I(k*), 4.5

S§L(N=rI(k*) [ h(ky)|1—expliky 1) (

where

24k . (4.6)

K* =
I,(k*)= [ [K°F(K)]
Since the boundary of locality in all the integrals I, is the
same as before we conclude that the borderline of locality
for calculating S is as before y (k)=5.
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C. Fourth- and higher-order structure functions

Examining Eq. (2.12) for n =4 we see that the ir region
has contributions from three regimes of the arguments
ki ..., kg, ie., (i) one of them small, (ii) two of them
small, or (iii) all of them small. The analysis of regions (i)
and (iii) are entirely analogous to the analysis of regions
(i) and (ii) in the preceding section. Again, the asymptot-
ic form of the fourth- (and, in fact, the nth-) order simul-
taneous correlation function when one of its arguments is
small is known and it is proportional to the small k vec-
tor and to the two-point correlator with the same argu-
ment [11]. To analyze regime (ii) we need to know the
asymptotic form of F'*) when two of its arguments are
small. The result is [12]

Fkp K0,k 5, k) & (6, + k) F Pk K0, — (6, F k)] . (4.7)

Completing the analysis we find

SPr) =Ty (k*), 4.8)
S{ (eI k*), 4.9)
S (r)y Iy (k*) . (4.10)

The conclusion is that the boundary of locality is again
unchanged.

In a similar fashion we can analyze all the higher-order
correlation functions. The general rule [12] is that

Frtme, ... k)

°:(K1+ ... +Kn)F(n+l)

’Kn’kn+1’ ..

X[Kps ooy Kpy =y F o 1)) 4.11)

Using this we find the surprising fact that the boundary
of locality is the same for all the higher-order structure
functions.

V. EXTENDED UNIVERSALITY
AND THE SCALING EXPONENTS

A. The main result

As long as we are within the region of locality we can
estimate S, (r) from (2.12) and (3.20) simply by replacing
k; by 1/r and dk; by 1/r°. We find

S,(r)=r3F(1/r), (5.1)
S;(r)=r 2[F(1/r)]%. (5.2)

It is worthwhile to note that (5.1) allows us to_express
y(k~1/r) in terms of S,(r), i.e., y(k=1/r)=V/S,(r)/r.
This determines 1/y(k) as the characteristic turn over
time of velocity fluctuations of scale r. This fact is trivial
in the inertial interval. This is not at all trivial for scales
in the vicinity of 7 since another time scale can be formed
from vk?2. This is therefore another way of presenting the
extended universality.

Equations (5.1) and (5.2) can be generalized for any n.
We find

S, (r=[r3F(1/rn]*?. (5.3)
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‘This result can be represented as our final form which is

the statement of extended universality

S, (N=C,r" 3 f (r /1", (5.4)
where
Fr/m=[r""3F1/r)"?. (5.5)

An equivalent form, which can be useful in experiments,
is

S, (n=[S;(n]""?. (5.6)

We stress that although (5.6), like (3.20), looks like a di-
mensional estimate, it is nontrivial because it extends to r
values that are in the vicinity of 7 where dimensional es-
timates should fail. In fact, what remains now is to esti-
mate how close to n can r be before Egs. (5.5) and (5.6)
lose their validity.

B. The boundary of validity of the extended universality

To estimate the range of validity of (5.5) and (5.6) we
use the following form of the simultaneous correlation
function F(k):

F(k)= Ak ~''exp(—akn) . (5.7)

This form has theoretical support [13] and had been suc-
cessfully used to fit experimental data [14,15]. In (5.7) 4
is a dimensional constant and a is a nondimensional pa-
rameter. Using this form we can compute the logarith-
mic derivative (3.6) and find

yk)=%+akn . (5.8)

The borderline of locality is obtained when y (k,)=S5, or
when

ak,n=4% . (5.9)
Deviation from pure power law is seen when y (k) devi-
ates, say, by 0.1 from its value {}. This means that one
loses the power-law behavior when ak7 is about 0.1. On
the contrary, (5.9) means that we can go a full order of
magnitude up in k before we lose the extended universali-
ty and the extended scaling relations. This is the main re-
sult of this paper. Note that this conclusion, which has
been derived here using the fit (5.7), is really more general
and it is simply a statement of the fact that y(k) can
change all the way from ' to 5 in about one decade of
scales.

C. The scaling exponents

The theory presented above derives the extended
universality with the standard Kolmogorov exponents.
In the experimental work that challenged us to achieve
this derivation the exponents that were measured differed
from the Kolmogorov prediction. Instead of exponents
n/3 in (5.6) the experiment yielded nonclassical ex-
ponents. For example, for n =2 the experimental fit is of
an exponent 0.701.

It is possible that for the low to moderate Reynolds
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numbers employed in this experiment, the deviations
from the exponents n/3 result from boundary effects.
The finite size of the system can reflect itself in “correc-
tions to scaling” that are slow to disappear upon increas-
ing k or decreasing r. We shall therefore analyze this
possibility now to assess better the experimental evidence.

In the case of nonisotropic excitation of the flow the
corrections to scaling are known [16]. If there is a pre-
ferred direction n on the large scale (such as mean flow
direction), the correction 8F to the simultaneous correla-
tion function is

8F(k) __ (kn)®
F(k) — kYKL’

where L here is the system size. In fact, it can be argued
that the same slow decay of the effect of the boundaries is
expected when the forcing is isotropic.

To estimate roughly how such a correction to scaling
affects the measured exponents, we model [17] the spec-
trum F(k) according to

F(k)=Bk ""3[14+(kL)"?3exp(—ank) ,

(5.10)

(5.11)

where we arbitrarily chose a positive sign to the correc-
tion to scaling term. Instead of (5.8) we shall have now

2
3[1+(kL)*?)
As a function of k this expression has a minimum which

is rather flat and can lead to an apparent exponent y,,.

We estimate the value of this exponent by the minimum
of (5.12) which is

y(k)y=4+ank + (5.12)

2/5
11, 10 | 95a
V=5 T | (5.13)

Since we do not have good numerical information about a
and L, we should not try to seriously attempt to draw nu-
merical conclusions from (5.13). Notwithstanding, if we
arbitrarily take the value of a to be of order 1, then for
1/L of the order of 107°-10"* we can reproduce the
measured numbers in the experiment.

On the other hand, it is obvious from Eq. (5.13) that
the correction to the value y =1 should decrease as a
function of the Reynolds number. In a separate publica-
tion [17] we calculated that this dependence is

11 ~R6_3/10

yapp E (5.14)

This is a sufficiently strong Re dependence to be noticed
in the range of Re that is studied by the experimental
group of Ciliberto. We were notified by this author [18]
that his results seem to indicate no significant Re depen-
dence. If this is verified by further experiments, we would
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tend to accept that the measured values of the scaling ex-
ponents stem from a different reason. Of course, this
opens up again the important and unsolved problem of
the origin of multiscaling in fluid mechanics, which is
certainly beyond the scope of this paper, see Ref. [20].

VI. CONCLUSIONS

Let us first summarize the main points of this paper.
We have shown that a consequence of the structure of the
NS equations and the property of the locality of interac-
tions is that the structure functions S,(r) have the form
(1.2), which we refer to as “extended universality.” The
range of validity of this form is extended to lower scales
as compared with Eq. (1.1), which is the is the form of
scale invariance. We estimate this extension to be about
one order of magnitude in length scales. Due to the ac-
tion of viscous dissipation, the actual values of S,(r) can
be already 2-3 orders of magnitude smaller than their
values in the scale invariant regime. Thus, by plotting in
log-log plots one structure function against the other, one
gains 2-3 orders of magnitudes of linear relations com-
pared to direct log-log plots of S,(r) vs r. This is the
main observation of Ref. [2] and we believe that we have
given here an adequate justification to this observation.

Another issue is the value of the scaling exponents that
were extracted from the experiment [19]. As is well
known, it is possible that at high Reynolds numbers one
sees deviations from the Kolmogorov predictions, but it
is also possible that all the observed deviations are actual-
ly preasymptotic [20]. We examined the possibility that
the deviations seen in Ref. [2] stem from corrections to
scaling, and we attempted to estimate these corrections
for the conditions of the experiment. Equation (5.14) can
be easily tested in the experiment. At present the experi-
mental results indicate no significant Re dependence in
the measured exponents, and this increases the credibility
of the existence of a deeper reason for the deviations from
the classical scaling exponents. How to derive such ex-
ponents from the theory is a different and much harder
issue [20].
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